

MOSFET 场效应晶体管 SOA 曲线的画法

在 MOSFET 场效应晶体管规格书中,都会给出 V_{DSS} 电压、I_{D、I_{DM}} 电流、热阻曲线、温度与功率关系曲线、SOA 曲线等等,本文以 IRF640 产品为例说明 SOA 曲线的画法。

1 找到 IRF640 规格书中的热阻曲线图, SOA 曲线可以通过热阻曲线上读取的值和 R_{DS (on)} 计算并画出来。

2 找出 IRF640 规格书中 V_{DSS}和 I_{DM}

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Vnes	Drain-source voltage	T _i = 25 °C to 175°C	-	200	V
V _{DSS} V _{DGR} V _{GS}	Drain-gate voltage Gate-source voltage	T_j = 25 °C to 175°C; R_{GS} = 20 kΩ		200 ± 20	V
	Continuous drain current	$T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 ^{\circ}\text{V}$ $T_{mb} = 100 ^{\circ}\text{C}; V_{GS} = 10 ^{\circ}\text{V}$	-	16 11	A
P _D T _j , T _{stg}	Pulsed drain current	T _{mb} = 25 °C		64	Α
	Total power dissipation Operating junction and storage temperature	T _{mb} = 25 °C	- - 55	136 175	°C

- 3 画 I_{DM} =64A 横线(电流限制), 一般 I_{DM} 定义等于 I_D 的 4 倍。
- 4 画 V_{DSS}=200V 的垂直线(电压限制)。
- 5 以上形成了 SOA 的框架
- 6 画 R_{DS} (on) 的限制线

限制线的一点(A)=I_{DM}(64A)*R_{DS (on)} (0.18)*2.9 (Tjmax)=33 V 另外一点(B)=1/(0.18*2.9)=1.9A, 也可根据图形选 8V,10V。

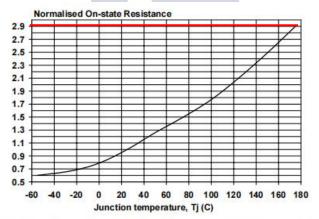


Fig.9. Normalised drain-source on-state resistance. $R_{DS(ON)}/R_{DS(ON)25 \text{ `C}} = f(T_i)$

7 画 10us 的 SOA 向右斜线的两个端点:根据热阻曲线图,查 10us 的单脉冲的 Rthja 稳态值为: 0.03(C点),如果是归一化曲线,需要乘以系数。

用PD的公式

P_D= (Tjmax-Ta) / Rthj-a

 $P_D = (175^{\circ}C - 25^{\circ}C) / 0.03 = 5000w$

5000W / 64A = 78.125V, 标注 D 点

5000W /200V =25A, 标注 E点

以此类推,画出 100us,1ms,10ms,100ms

8 最终 SOA 曲线就完成了。

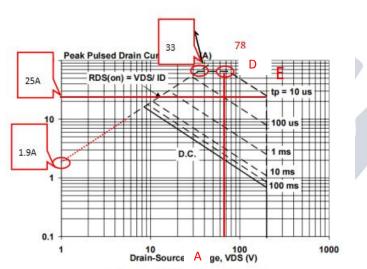


Fig.3. Safe operating area I_D & I_{DM} = $f(V_{DS})$; I_{DM} single pulse; parameter t_p